DETERMINING RESERVOIR PRESSURE IN CLOSED
RESERVOIR AND ELASTIC EXPULSION OF FLUID
WHEN RESERVOIR IS OPENED

Yu. A. Afinogenov and V. I. Pen'kovskii

The studies of Tkhostov [1] have shown that the reservoir pressures of fluid in closed reservoirs
differ from the hydrostatic value. This has led to the determination of the pressure in such reservoirs and
the solution of the problem of elastic expulsion of the fluid when the reservoir is opened,

1, Assume a closed reservoir is subjected to the confining pressure q. The equation of equilibrium
(without account for inertial forces) is written in the form

E21

5+P=§S[(1—m)(Pz~Pl)-l—mp1]d$1+q (1.1)

0

s={1—ms?— ({1 —m)p (1'2)

Here o = fictitious pressure in skeleton; oV = true stress [2] in the rock; p = pressure in fluid; g =
gravitational acceleration; m = porosity; p, and p; = densities of rock particles and reservoir fluid; x; =
depth of reservoir element measured from reservoir roof.

We assume that py = const (particles do not compress) and under the action of the external loading
there is only repacking of the particles (compaction), obeying Hooke's law

&k =0 (1.3)

where €, is the relative volumetric compression of the skeleton, E, is the bulk modulus of elasticity of the
skeleton. The elastic compression of the fluid is

BlEl =p (1 .4)

Specifically, if a rock specimen which does not contain fluid is loaded, then p = 0 and from (1.2) we
obtain ¢ = (1-m)cV, i.e., in this case the fictitious stress is the average normal stress distributed over
the entire section of the specimen.

On the other hand, if a specimen saturated with fluid is entirely in a fluid with the pressure p, then
the skeleton will not be loaded, ¢ = 0, and from (1.2) we obtain ¢V = p, i.e., the rock particles will be sub-
jected to all-round hydraulic compression of intensity p.

In the case of a horizontally positioned reservoir, when its thickness can be neglected, (1.1) takes
the form o +p=gq.

Let us find the load distribution in a horizontal reservoir in the static condition (¢ = const, p = const).
To this end we use the equation of compatibility of the skeleton and pore fluid deformations.

- A closed reservoir can be modeled by a cylinder with absolutely rigid walls, filled with a porous
medium and a fluid. An impermeable piston presses down on the two-phase medium from above with the
intensity q.

In the unloaded condition the reservoir element with porosity my occupies in the cylinder the volume
vy. The particles occupy the volume (1-mg) vy. After loading, the element volume becomes equal to
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vy = (1 — 82) Ug

By assumption the rock particles do not deform, therefore the pore volume occupied by the fluid
will be

!)3=(‘l—€z)vo—(1——mo) l}o:(mD'-—-Sz)Uo

The porosity of the element when loaded will be

m== To:siz (1.5)
Then
mo —m (1—mo) 22
=T e T (i —eg)
or neglecting the quantity €,€,, we rewrite
g = & (1 — mg) [ mo
Thus, using (1.3) and (1.4) we have
14 {—me o ,
E_l= o —E—2- \1.6)
Hence, using ¢ = gq—p we obtain
p = gl + moE2By™ (4 — mg) ] {1.7)

We shall calculate the stresses in the water and the rock skeleton at the roof level for the following
parameters: E; = 0.2 - 10° at, E, = 0.5 + 10° at, g = 500 at, rock specific weight Py = 2.3 g/cm?, reservoir
roof distance from the earth's surface H=2174 m, m; = 0.2. For these parameters we have

p == 307 at, 0 = 193 at

The fluid pressure in the pores in the confined reservoir at a depth of 2174 m for the selected E; and
E, differs from the hydrostatic pressure by 1.4 times. The larger the modulusE,, the lower the pressure
inside the pores will be for a constant q.

At the present time in the gas and oil fields the magnitude of the reservoir pressure is usually con-
sidered equal to the magnitude of the hydrostatic pressure of the liquid column at the depth in question, al-
though this condition is not always satisfied in the presence of a closed reservoir compressed by tectonic
forces.

As noted in [1], the fluid pressure within reservoirs varies from 0.7 to 2 times the hydrostatic pres-
sure. The variations of the reservoir pressure within closed reservoirs depend on the ratio E,y / E;.
Anomalously high pressures within the reservoirs may appear as a result of the action of tectonic forces,
which are difficult to take into account at the earth's surface.

Let us find the load distribution in a closed reservoir having some thickness. With account for 1.4)
we obtain the relation py(p) in the form

pr=po(l+p/Ep) (1.8)
Considering ¢ = const, we write (1.1) in the form

d d
T+ g =gt —m )] — gor [1 — 2m (2]

or taking (1.3), (1.5), (1.6), (1.8) into account and introducing the dimensionless pressure and coordinate,

a— p1
a—Bp1

d}u =dz

where
X1

P=p/Ey z=mpwE/a+E)2 ¢ @) dn
¢
a= (1 —mp)/my,a=na(py/po—1)+1

B=a—1+4 (amp)!,
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We integrate the differential equation written above:

400ty ot ,
/ z=p /p+Pp2(a—af)Inja —Bp;| +¢
2001 From the condition
p . . . .zl‘, mJ z=20, py = po = aq (e + Ey | E)"1E?
2170 2470 we find
Fig. 1
¢=—po/P—p2(a—af)In|a — Bpo|
Consequently
z=(py —po) Bt + B~% (¢ — af) ln [{x — Bpy) / (& — Bpo)] (1.9)

The relation p;(x) is easily constructed graphically.
Let us compare the magnitude of the reservoir pressure calculated using (1.9) with the magnitude of
the hydrostatic pressure, satisfying the following differential equation:
“dp [ dzy = gm

Considering (1.8), we represent this equation in the form

dp [ dzy = g (z) po (1 + p/ Ey)

Solving the equation in dimensionless quantities, we find
Xy

z=In{(l+p)+c, m=plE, =z= PoEl"S £ (1) dan
0

Since p; = 0 for x = 0, the constant of integration ¢ = 0. Finally
pp=e —1 (1.10)

The comparison of the pressures at the same depth from the earth's surface is made on the basis of
(1.9) and (1.10).

Figure 1 shows reservoir pressure as a function of depth for a closed reservoir and a reservoir with
hydrostatic pressure: 1 = pressure distribution in closed reservoir, 2 = distribution in open reservoir.

2. Upon the appearance of a crack in the impermeable wall of the closed reservoir the equilibrium
state of the two-phase system is disturbed until the fluid flowing out of the reservoir lowers the pressure
therein to the hydrostatic value.

We take the fluid equation of motion in the form

1 dp
v:—K(—gB-l——é;;~i). K=gmk/p 2.1)

Using the Slichter-Kozeny equation, the permeability k is expressed in terms of the porosity m
k= Am* | (1 — m)?
Here A is a constant which depends on the grain size.

Since the grains, by assumption, do not deform, A is an absolute constant. Therefore
(2.2)

Ee~ko[t — (8 — ma) O’mo_lEgl]
With increase of the pressure the fluid viscosity (particularly fluids of complex molecular structure)

increases markedly:
po=po (t + asp) 2.3)

Then

pl=pe™ (1 — app) 2.4)
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Consequently
Ex=EKo(l+p/E)( —aw)(d —ayp), Ko=pogho!/po wy== (38— mo)/ (moEs)

Using (1.1) and setting oy = 1/E,, we rewrite

Xy *1 £
o
KE=Ko [1 —tta 4 p {08 4 O — 01) — UaPag S (1 —m)dzs —asg S mpydey -} olag S A—mp daa]
[} (1] [

If in this equation we limit ourselves to small quantities of first order, then we must set

EN Xt ’ 2
S {t —m)dzi= (4 — mo) 1, ‘ mp1de; = mopoZ1, S A —m)prdzs = (1 — mo) poz
0 6 0 -

Then, setting
By = @y + 0 — 0y, 8, = g0 [(1 = ma) pp / o + 2mo — 1]
we obtain
K= Ko (1 — Goq -+ 8gp — 8474}
Thus

i 9
v=~Ko(1—asq+esp—em)<-;-l§— a—i———i)

The equation of continuity of the fluid flowing out of the rock has the form

) 2
2 (o) = — 5 (p10)

Making the substitutions

mpy == (mo — &) (1 — &x) 1 po (1 -+ asp) == pomo (1 + Asp — acEq7?)
X
= poma [1 +tsp — a7 (¢ = p + 8| [l —m) (2 — ) +- mpa] da)]
0

(1 ap
—p1w =Ko (1 — 237 4 83p — &471) g om ™

and denoting

v = Kot [gmopo (a3 + a / Eg)]_l
we write the continuity equation in the form

/] 4 ap
-—5— = m {(i — 029 + E3p — 84%1) [ B B0 { +¢sP)]}

After differentiating in the right side we obtain

op p dp
1 =W —gtesp—ean)) 5o — (oo [es +as (1 — ag)] + e} 7,7 + 24(0p/0:1)° + gpoes
Converting in this equation to dimensionless quantities, we have

. T 8py . a*py ép ap \?
o = (o eap— o) o — s TP 4 e ()

P1=pl a1y ="1/L% =1 — gy, &5 = g&;, & = gL
z=g /L, 0o = agg, (gpor=gpo L /g 2.5)
a5 = (gPo)y (B5 + Coay) + e, g == (gPo)18e
Here L is the length of the rock from which the fluid is expelled. Using the approximate method in
theory of one-dimensional unsteady fluid filtration in the elastic regime, presented in [3], we seek the solu-
tion of (2.5) in the form

z e
P=cote T (,t,) 42 P—l:z'r) (2.6)
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The boundary conditions are: fluid pressure at the withdrawal boundary at the moment of initiation
of expulsion

#=0,p=ro @.7)
the pressure outside the disturbance zone
a=he=p 2.8)
The initial condition is
T=0,1=0 2.9)

Still another condition must be satisfied until the boundary of the disturbance zone reaches the im-
permeable wall of the confirmed reservoir:

op [0z, =0, for gz =1 (2.10)

Bearing in mind (2.6)-@2.10), we obtain

o == Doy &1 =2 (p° — po) ez = — (p° — Po)
Then (2.6) is written as
2
p=po+2(p°—po) l:‘("':) —(»°—po) l;'l(xt) 2.11)

We reduce (2.11) to dimensionless quantities

] z?
Pu=po 20 qr—¢ 7

P =p/q, po=po/q, ¢ = (p° ~ po)fg, z = /L, h =YL
Integrating (2.5) with respect to x in the limits from 0 to; and using (2.6), we obtain the differential
equation
dry = (al? + bly + iy Yydl,
a= —3as/¢, b= —3 (g — az), i =60 + &Por) 2.12)
Integrating with account for b®—4 ai> 0 and also using (2.9), we obtain

1 K3 _b_ b 2aly [ #a -1
l:'1=——2a In 7 L4 ] ll+il+ 2aVb2—4ai In Zaly [ %1+ 1 (2.13)

m=b- VF—id, e =5 Vb*—dai

Then the relation Z;(t;) can be obtained graphically.

In the second stage of fluid expulsion from the rock, after the boundary of the disturbance zone con-
tacts the impermeable reservoir wall at the time T4y, we seek the pressure function in the form

Pe=Pi(t)+ Py (t)z+ Ps(r1) 2% pu=plq z2=2/1L
Here Py, Py, P;, Py, 2nd x are dimensionless variables; then

a
Pufeg=pu, | _ =0 (2.14)

From (2.14) we have
Py (1) =poy, Pp(t)=—2P3(%W), Pi2=poy— 2 Pyz Pyt (2.15)

Integrating (2.5) with respect to x from 0 to Ly = 1 and using (2.15), we obtain

dP; [ dvy = a;P3 1 ao .
2.16)
ay = 1.5 (g — 05 — 20, — 285p10) (13 << 0), -~ a0 = —150 (a0 <0)

Solving (2.16), we obtain
Py = (Gyay)71 exp (ay%y) — @0/ 4

where Gy is the constant of integration, found from the condition of continuous transition of the pressure
pyy into pyy at the time 7y for x = 1.
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From the condition pyy (Tyg) = pya (Tq) at the point x = 1 with account for Iy(ryg) = 1 we have
Py (t30) = ~— ¢, Gyt = (a0 — a;¢} exp (—ar Tyo) ;
therefore
Py (1) = (a0 / a3 — ¢) exp {a; (11 — Tyo)] — a0 / a4
Thus, the pressure function in the second stage
P1s = Poy — 2 [(ao / ay — ¢) exp laz (13 — o)l — a0/ adz 4+ [ao / ay ~c) expla, (¥4 ~— T10) — a0 / 0} <* (2.17)

We assuvme that elastic fluid expulsion from the rock follows the Darcy law

& (5) ap
Q= £ (EET)xFo 2.18)

Here Q = discharge; F = reservoir section area; o = effective rock pressure,

We write (2.18) in dimensionless quantities

, a=bucn (), 2.19)
O = wolQ/ (koFoq), Kby =k (0)/ ko, W= (p)/ po, Fr=F(0)/Fo,
The quantities ky, 4y, Fy are measured under atmospheric conditions.
Using (1.3) and (1.5), we express Fy through o,
Fi=1-—0/E, 2.20)

The fluid volume vy leaving the reservoir through the section x = 0 during the first expulsion stage
with account for (2.2), (2.3), 2.20),and py4 is expressed by the integral

V1= S Qudty=2c (1 —PBuos) (1 —o1) (1 + ag)? S Lt (1) de
1)
a.

0
ﬁ1=(3—m0)/m01 UIZG/E%

Let us find the second expulsion stage termination time 7§ from the condition py—py — ay/a, for
x = 1; then 7§ — «.

The fluid volume vy, leaving the reservoir during the second stage with account for (2.2}, @.3),
(2.20), 2.17) is

> oo

- S Qudti=— 2 (1 — Byon) (f — o1) (1 + car)~ S Ps (1) da

T1o T

The total fluid volume v expelled from the reservoir in the elastic regime is

V= vyt U

Specifically, let us calculate the amount of water expelled from a rock specimen of length L = 5 ¢m,
diameter 3 cm (depth of specimen withdrawal H = 2174 m) for the following values of the parameters

po =220 at gy =5.10-5 atl g, = 2.8.10~% at-1
a; = 10-10-5 at~1, p, = 2.3g/en’ py = 1 glon?
Eyt=2.10"% atl, mg= 0,2, g = 9.8 m/sec?, g = 500 at
&5 = 0.0983, 5 = 0.153.107%, @, = 0.8767, a; = 0.2732-10~5, a4 == 0.153.10-1°,
vag = 0.025, (gpo) = 1075
poy = 0.44, ko = 100 mDarcies, po = 0.3 ¢p

The fluid pressure p° developed in the specimen as a result of applying the instantaneous load g is
calculated using (1.7)

p° = 307 at

The time required to create the load q is negligibly small in comparison with the duration of the
process of water expulsion from the specimen.
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In (2.12) we evaluate the denominator
a = — 2.638.10710, b = 0.3606.10"5, { = 5.52, | al,® + by | <L i
Therefore we have from (2.12)
idy = Ldly, or L=V %in
Here the initial condition has been taken into account.
The pressure function of the fluid in the specimen in the first stage has the form

Pu = 0.44 + 0.105 217" — 0.016 o27,?
0= 0.09, f, = 14, 0 = 313 at, o, = 62.6-10~%, ay = 22-10°3, p,, = 0.014

Converting to dimensional quantities, we find
v, = 3.40~4 cm?
We find the volume vy _
a9 = — 1.5:0453-10"90 ~ 0, ¢, = — 2.76, c= 0474, y, = 0.112
Converting to dimensional variables we find
vy = 0.066 cm® v = v 4 vy = 0.0663 cm’®

An experimental setup [4] was used to test a rock specimen (taken in the Sobolin field from well 172-R

from a depth of 2172-2176 m with specific weight 2.3 g/em3, open porosity 0.2, aleurolite) with the proper-
ties indicated above under conditions similar to those used in the calculation. Thevolume of water expelled
from the specimen was equal to 0,08 cm’®, i.e., somewhat greater than the calculated value, which is ex-
plained by inelastic deformations in the speciment in the course of the experiment.
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